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ABSTRACT

An adaptive control technique, which is the Generalized Predictive Control (GPC),
was applied for the control of the injection molding process through simulation. The
cavity pressure in the filling slage was chosen as the controlled variable due {o its direct
clfect on the final product quality and its interactions with most of the process variables.
A model that represents the dynamic beliaviour of cavity pressure related i.<l> the control
valve which was devcloped in a previous study was used in the study. This model does not
incorporate the nonlinearity and time-varialion encountered in the process. Therelore,
another model was identified using real input/outpul data.

The results of GPC were compared to that of the fixed- parameters PID controller.

The results showed an improvement over the PID controller.
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NOMENCLATURE
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Polynomials in the CARIMA model

Vector containing é(t) values

polynomials in the Diophantine equation
Error between predicted outputl and the set point
Matrix whose elements are g;

Polynomial equals to E; B

Part of G; associated with unknown terms
Part of G; associated with known lerms
Sampling interval

Identity matrix;

Value of a quadratic cost function

Process time delay in samples

Correction gain vector in RLS

Ramping slope in the cavity pressure model
Process gain in the cavity pressure model
Number of estimated parameters

Minimum prediction horizon
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Maximum prediction horizon

The control horizon

The covariance matrix in the RLS algorithm
The cavily pressure

Time

Filtering polynomial

Control signal input to the process
Vector of future control increments
Set point for the process

Vector of set points in future
Measured output of the process
Vector of y(t)

predicted oulput of the process
Backward shift operator

Constant forgetting factor

Variable forgetting factor

The difference operator(1-z71)
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é(t) :

= 1Y

¢(e) :

T4 :

(1) :

P(¢t) -

The error between estimaled and true parameters
Vector of estimaled paramelers;

Control weighting factor

Zero mean white noise

Tuning knob for 5(t)

The process time constant

Derivative time for the PID

Integral time for the PID

Vector containing input/output data in RLS

Matrix conlaining ¢{t) vectors
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Chaptér 1
INTRODUCTION

1.1 Injection Molding Process

Injection Molding process is one of the most important polymer processing techniques,
in which a polymeric material is converted into plastic finished articles [1]. A schematic

diagram of an injection molding machine is shown in Figure 1.1 .

According to the nature of the process, it can be considered to be consisting of several
conseculive stages, these stages are: melling, filling, packing and cooling. During melting
the solid polymer is pushed from the feed hopper and moved forward by the rotating screw
through the barrel and towards the nozzle. Electric heaters which surround the barrel
are used to melt the polymer. Then the molten polymer is forced through the nozzle and
the delivery system(sprue and runners) into the cavity by the application of pressure to
the rear of the screw using the hydraulic system. After filling of fhe cavity, more polymer
is forced into the cavily to densify it and to compensate for shrinkage in the part during
cooling. After that the mold gate freezes-off and the polymer is cooled to solidification
to the cavity shape. Then the article is ejected and the process is repeated [1].

A good indication of what is occurring inside the mold cavity is the cavity pressure

measurement. Figure 1.2 shows the cavily pressure profile as a function of time. The
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stages ol the process are apparent from the figure.
The quality of the product is specified by its physical and mechanical properties. Each
of the above stages and the corresponding variables affect the final product propertics

{3, 4, 5]. The process variables can be classified as [6]:

1. Input variables: these are the machine input variables such as the barrel tem-
perature and injection speed. External disturbances and material propertics are

considered as input variables too.

2. Process state variables or processing variables: which are the physical properties of

the melt as a function of lime, such as melt temperature and pressure.

3. Output variables: which are the physical and mechanical properties of the product.

However, these variables are highly interdependent, some of these variables affect the
final product quality more than the others. Cavity gate pressure is one of the most signif-
icant variables in the process, due to its interactions with most of the process variables,

and its direct eflect on the product quality |2, 3, 6].

1.2 Control of the Process

Importance of plastics is increasing, since the plastic articles are used in many appli-
cations such as airplanes, houses, cars and olhers, replacing metals in mansr applications,
and in many cases the product should be of very high quality. So, & control scheme
should be applied to the process in order to produce consistent parts of required quality
and with minimun losses in time, energy and material.

Closed-loop control based on measurement of the output variables is limited by sensing

capabilities. The product characteristics cannot be measured directly. On the other hand,
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the machine variables are not directly related to the output variables, the relations are

complex, not well established and interrupled by the processing variables [2].

Another aliernative is the closed-loop control of the processing variables. These vari-
ables are directly related to the output variables, so more adequate control of the product

quality will be obtained.
Control of a processing variable requires the determination of the desired profile which
corresponds to the required quality and a quantitative dynamic model that represents

the time-varying and nonlinear nature of the process.

Several studies were done to produce dynamic models relating certain processing
variable to the control valve opening as a manipulated variable [7, 8, 9]. Simple dynamic
models for the cavily gate pressure during the filling and packing stages were obtained [2].
These models are of much importance for control studi;zs , however they do not incorporate

the time- variation and nonlinearity present in the process.

Conventional controllers with fixed sctiings such as the Proportional - Integral -
Derivative (PID} controller can give satisfaclory performance provided the settings have
been properly tuned [10]. Ilowever, the process is characterized by nonlinear behaviour,
time- variation, complex inieractions between the process variables and the process is
affected by noise and disturbances. All of these, make the initial setting and retuning of

the PID controller a difficult and time- consuming lask. Therefore, another control design

procedure which can tune its parameters automatically is needed, such as Self-Tuning

Control (STC).

A sell-luning conlrol algorithm is a combination of a control design method and an

identification technique [10, 11]. Figure 1.3 shows a block diagram of a general self-tuning
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controller applied to a certain process. Based on the on-line measured input/output data
the estimator updates the assumed dynamic model of the process, then the control algo-
rithm calculates the control signal which satisfy a certain cost function such as reducing
the error between the actual response and the desired one.

As will be discussed in the next chapter many types of STC are available [12], they
could differ in the cost function to be minimized, the type of the identified model or
they could have a prediction nature. As will be shown in the next chapter, a self-tuning
controller, namely the Generalized Predictive Control (GPC) (13, 14, 16], was proved
through various applications to be suilable for general self-tuning purposes. In this
study, this controller will be used to control the cavity pressure in the filling stage of the

injeclion molding process.
1.3 Objectives of the Study

The goal of this study is to investigaie the application of adaptive control on the
injection molding process. It is a step towards solving the complexities involved in the
control of the process, such as the nonlinearily and the complex interactions between the

process variables.

The study will be performed through simulation, with the following objectives:

1. The development of computer programs that implement the GPC algorithm along

with an identification tcchnique, and to investigate the various design parameters.

2. The evaluation of the use of the GPC algorithm in the control of the cavity gate
pressure during the filling stage, and to compare the results obtained with those of

the PID controller.
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Chaptér 2

LITERATURE REVIEW

2.1 Injection Molding

Several studies have been reported in the literature concerned with the modelling and
control of injection molding process {16 — 27]. Most of these studies were of qualitative
nature and did not treat the complex interaction of the process variables. Never the less,
these studies comprised the base for more quantitative and detailed studies in the area
of the dynamics and control of the injection molding process.

Sanchagrin [3] employed an experimental design method to determine the effect of
several input variables on some of the output variables. The results were in time series
form representing the relation between inpul and output parameters. One of the obtained

relations is:

Pe(k) = 0.872Pc(k — 1) + 6.797Ph(k) —5.66Ph(k —1) (2.1

Where Pc is the maximmum cavily pressure at the cycle k, and Ph is the holding pressure.
He determined the most important paramelers such as the ram velocity and the holding

pressure, and examined closed loop control on them.

Shankar and Paul [4] developed a delerministic nonlinear lumped parameter dynamic

model by combining analytical models of individual machine elements. The model was
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of seventh order, it was solved numerically and simulated on a digital computer. The

model gave some deviations from the experimental results.

Wang et al. [28] have used an approach similar to that of Shankar and Paul, taking
into consideration the transicnt behaviour for the development of a simulation model.

They studied the eflect of machine variables on ram velocity.

Parnaby and Eissa [29] used finite difference and lumped- parameter techniques to
solve the transport equations. The aim was to produce a model reference for on-line
computer control. Many assumptions were made to simplify the equations. The model
consists of equations in polynomial form for various variables (such as the melt tempera-
ture and ram velocity) as function of time. Depending on this paper they [30] constructed
a model reference computer control and studied the factors that affect the product quality
in both injection and solidification stages. In the injection stage , the ram velocity was
controlled using a digital PID controller , based on measurements of linear displacement
of the ram . In the solidification stage the controlled variables were the volume shrink-
age and the relaxation of elastic strain following cessation of the flow . The interactions
between several process variables were studied . The experimental and calculated cavily
pressure indicated a remarkable deviation . Also this is the case with the birefingence

value ( 2 measure of normal stresses ). This decreased the model suitability to control

the process. 41 &2 3 g

Wang et al. [31] developed a transfer function model relating the ram velocity to
the control valve opening. Recursive lcast squares method was used to estimale the

parameters of the discrete version of the model. The discrete model was employed by

Agrawal el al. [32], who designed a sell-tuning regulator for control of Ram velocity
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10.

by simulation. Generalized minimum variance controller was used, but no experimental
evaluation was carried out.

Ricketson and Wang [5] constructed a simple steady state model relating part thick-
ness to some other variables. The model is updated if thickness measurement error
exceeds a tolerance value. Least squarcs method was used to estimate the model coeffi-
cients. Statistical experiment designs were used to form the process model, and it was
regulated during the process.

Kamal et al. [7} developed dynamic models for nozzle and hydraulic pressure, using
experimental transfer function approach. Deterministic and stochastic models were ob-
tained relating the variations of hydraulic and nozzle pressure to changes in the control
valve opening. Abu Fara et al. [33] used the dynamic models developed for hydraulic
and nozzle pressure to evaluate the performance of some conventional controllers using
computer simulation.

Abu Fara [2] employed the transfer function approach to develop dynamic models for
some of the injection molding variables with emphasis on cavity pressure. The models
describe the variations of the studied variable to changes in the control valve opening.
The dynamic behaviour of cavity gate pressure in the filling and packing stages of the
ptocess was studied. In the filling stage both deterministic and stochastic modelling
techniques were used to obtain the models.The deterministic model was best modelled

by a ficst order plus time delay superimposed on a ramping component of the form:

ezt

Pe(t) = Kyt + Kyl — e (2.2)

where Pc is the cavily gate pressure, K, is the ramping slope, Kj is the process gain, T

is the process lime constant, t is lime and td is the time delay. Converting this model to
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i1

the digital form using zero order hold results in [2]:

Pe(t) _ bzt —byz7? — b2? ' (2.3)
u(t) 1—ayz1 + a2 -

Where

0 =1+e7

a; = eF

by = Kk

by = Kihe™ — Kao(l — e¥)

by = Ka(l ~ €7)

The numerical values of these parameters were calculated using the following values of
the process parameters {2]:

Ky = 14.0 psi/%.sec

Ky = 3.34 psi/%

h = 01, the sampling time in seconds

T = .106 scc

Thus the resulting model is:

Pc(t)  0.1427' 4017272 - 03272

= 2.4
u(t) 1-1.91z-% +0.91z? (24)

In the packing stage, step tests were carried out to develop dynamic models of hy-
draulic, nozzle and cavity pressures. They were best modelled by a first order plus time
delay models.

It was shown that the models are nonlinear and they depend mainly on the amount
of polymer in the cavity in both filling and packing stages.

To evaluate the developed models, a simulation study was carried out using: PI,
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PID and Dahlin controllers. The controllers were tuned according lo Integral of Time
Weighted Absolute Error (ITAE) criterion. Then the controllers settings were used to
control the process experimentally. Due to nonlinearity, a non-satisfactory performance
was secn. Some improvement occurred, when a gain scheduling control strategy was
employed, where the filling stage was divided into three regions and the packing stage

inlo two.

Recently, Srinivasan et al. [34, 35] have employed the developed models by Abu
Fara. They carricd a simulation study to evaluate a Learning Control scheme applied to
the filling stage. The control algorithm makes use of the cyclical nature of the process to
improve the effectiveness of the dosed- loop control. Error in the overall cycle is used for
correction in the next one. The accuracy of the results was improved over thal achieved
using traditional controllers, but the developed controller did not treat the nonlinear and

lime-variation of the process.

The application of conventional control stralegies for the injection molding process
has achieved acceptable results with limitations. It hasn't rectified the problems exhib-
ited in the dynamic response of the process. Thus, detailed stochastic identification and
application of modern control theory to the process would be desirable. The rapidly
growing availability of powerful and inexpensive computer hardware and software ca-
pabilities provide opportunitics for achieving on-line process identification and adaptive

control techniques, such as self-tuning control {(STC).
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2.2 Self-Tuning Control

Scll-tuning control is » main approach to adaptive control. Its method for obtaining an
automatic adjustﬁent mechanism is to identify the system using measu:ed input/output
data and then the controller output is decided using the identified model [10].

Another approach is the model reference adaptive controller (MRAC ). The main idea
in this appronch is the existance of a relerence tnodel that specify the desired performance
of the process. Measured input/output data are used with the reference model to adjust
the controller parameters. The overall aim is to force the actual output lo correspond to
the desired model output {12, 36].

From a design point of view, the sell-tuning controllers can be classified into iwo
categories: the first aims to minimize a quadratic cost function such as minimizing the
error between the set point and the measured output, and the second attempts to locate
the closed-loop poles at specified locations which is known as pole-placement algorithm
[12].

The work of Astrom & Wittenmark [37] and Peterka [38] have introduced the mini-
mum variance ( MV ) controller. The objective of this controller is to minimize the error
beiween the predicted output and the desired set point profile. Tite MYV suffers from some
problems: lack of identifiability in dosed-loop and instability with nonminimum phase
processes due to cancellation of unstable process zeros. Some of these problems were
tackled by several researchers [39, 40, 41]. A comprehensive out(:(')me of the research on
MV is the introduction of the Generalized Minimum Variance (GMV) controller [11, 42]
. The cost function in this control algorithm introduces penalty on the control action

as well as minimization of the error between measured output and the desired set point.
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It incorporates a variety of design polynomials to ensure stability and correct tracking
of the set point. The use of control weighting reduces the control effort and allows for
stabilizing certain non-minimum phase processes {11, 42].

Unfortunately, MV and lo a lesser extent GMV are sensitive to the choice of the dead
time in the process. If the dead time is incorrectly chosen or it varies with time, then the
instability of the controller will be expected|(10, 16).

Parallel developments to those discussed above have taken place in Pole-placement
control |43]. This algorithiu can success{ully handle a varying dcad time or non-minimum
phase systems. Tle incorporation of a desired pole-location allows model-reference like
objectives to be rcached by the closed-loop.

However, this controller suffers from some problems too. The algorithm may fail if
there are model/process mismatch (i.c. it depends on the correct choice of the model

order).

A further development in self-tuning control is the Generalized Predictive Control (GPC)

[13, 14]. The algorithm predicts a series of future outputs and decide a series of controls
at cach sample to set the actual output at these samples to the desired set point. A
Controlled -Auto-Regressive-Integrated-Moving-Average( CARIMA) model is used in the
controller design which introduces an integral effect, so the offsets in the response are

diminated. In addition to that the algorithm contains a lot of design parameters (knobs},

upon their choice the performance of the controller can be altered to meet the application

control specifications.

In conlrast lo the other mentioned algorithms, the GPC can be robust even with

varying process dead time and model order. In addilion to the capability to control
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non-minimum phase processes [16].

QGPC was applied to various practical applications: to a cement grinding mill [44], to
a spray drying tower [45} which uses a multiloop version of GPC and 1o a compliant robot
arm [16]. These applications have shown that GPC is an attractive contender for general
self-tuning applications, especially when the process is non-linear and time-variant, which
is a feature of the injection molding process.

All of the above sel{-tuning methods require a parameter estimation algorithm to
provide the controller with on-line estimates. One of the on- line parameter estimation
techniques is the Recursive Least Squares (RLS) algorithm. The estimated paramelers
are used in controller calculations as if they were exact, leading to a certainty equivalent
adaplive controller [12). Needless to say that basic RLS technique has. to be modified
in order to be used for nonlinear and time-varying processes. These modifications with

simulation examples will be discussed in the next chapter.
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Chapter 3

PARAMETER ESTIMATION

To control a process, dynamic models which describe the behaviour of the process are
needed. Usually these models are not known. Methods for obtaining the models can be
divided into theoritical and experimental. Theoritical models are obtained by using trans-
port equations togelher with the necessary equations of state and constitutive relations.
Iowever, the resulting differential equations are complex and demand a large computa-
tional effort |2, 7]. Experimental modelling, called identificalion or parameter estimation,
can be classified as off-line or on-line. The first is used for a complete set (batch) of data
using a. fitting criterion. The second fits a dynamic model of an assumed structure using
running input/output data and a recursive criterion. On-line identification is a basic step
in sell-tuning control. Its main function is to provide parameter estimates of the process
model for the controller at each time instant. A locally linearized model is identified,

where changes in the dynamics are transformed into parameter changes.

A simple and good on-line identification method is the Recursive Least Squares (RLS)

[36]). This method gives fast convergence especially for a deterministic model. On the’

other hand, the gradient methods [36] are characterized by slow convergence and hence

poor adaptation. Other methods such as the Maximum Likelihood and Extended Least
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Squares are uscd for identification of stochastic models. Therefore, and since that the
GPC depends on a deterministic model {13], the RLS method is adopted. It will be
discussed here and will be used as an estimator with the GPC algorithm.

The first step in identification is the assumplion of the model form. In this chapler a
CARIMA(Controlled- Auto-Regressive-Integrated- Moving- Average) model is considered.
llowever, other model forms can be used. Figure- 3.1 shows a process and disturbance
schematic diagram assuming that the process is represented by the CARIMA model. The

CARIMA model is given by [13]:

A(z"l)y(t) = z"“’B(z")u(t -+ C—(i:é—)-gm (3.1)

where y,u, and{ are the measured output, control input, and uncorrelated random se-
quence respectively. A is the difference operator (1 — z7') and kd is the time delay in
samples. A,B and C are polynomials in the backward shift operator z~! with degrees na
, nb and nc respectively:

Az =14zt + o F apez™™

Bz =by+ bz +--- + bz "t

Clz")=co+ ezt +r+ ez ™
The parameters of these polynomials are those to be eslimated. The model can be written

in a compact form, using vector notation:
Dy(t) = 476 (3.2)

where:

Dy

— T
- [a'l)"' pa'na:bﬂgblg"' ,bnb,CO,CI,"',Cnc]

and
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Figure 3.1: Process and Disturbance Schematic Diagram. Assuming a

CARIMA Model.
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¢ =|-Aylt — 1),-Ay(t - 2),-++,~Dy(t — na), Au(t — kd - 1),
oo Au(t — kd — nb),e(t — 1),e(t —2},---,e(t — nc))
The parameters of the above model denoted by 8 can be identified for a set of data

using the Standard Least Squares {SL.S) mcthod.

3.1 Standard Least Squares (SLS) Algorithm

The complele derivation of the algorithm is present in reference [36]. It is reviewed
in Appendix A. The algorithm is based on minimizing the following cost funclion which

represents the sum of sqaures of errors:
J=Y&(t)=E£"E (3.3)

Where €{t) is the difference between measured and estimated output at time t (ie. the

modelling error). It is defined by:
(t) = By(t) - §(¢) = dy(t) — ()8 (3.4)
E is a column vector containing é(t) values:
E=Y -V =Y-0Th

where :

Y = [Ay(1), Ay(2), -, Ay(N)]T

¥ is a malrix of size N x (na 4 nb + nc), where N is the number of data points. This

matrix is delined as:

b= [‘75(1): ¢(2)| v :ﬁb(N)}T
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it contains input/output data up to time t=N.
Rewriting equation ( 3.3) :

J= (¥ —aT)T (v —&70) (3.5)

By minimizing J with respect lo 8, the least squares estimaltion of § parameters is given

by the following equation [36):

= [2T T3 Y] (3.6)

This equation gives the least squares estimates of the model parameters for a set of

data. So it can be used for ofi-line identification to obtain a fixed model. But for self-

tuning control purposes, an on-line identification method is needed. So, a recursive form

of the SLS known as Recursive Least Squares (RLS) is considered.

3.2 Recursive Least Squares

The idea in the recursive algorithn is to utilize the new input/output data and the

past estimales to decide ihe new estimales al cach sampling instant [36). Iigure 3.2

chows a schemalic diagram of the RLS method. This algorithm is based on minimizing

the same cost funclion in the SLS algorithm given by Equation( 3.3).

The identification procedure consists of the following steps:

1. calculation of the prediction error

(1) = By(t) — T8 — 1) (3.7)

2. calculation of the gain adjustment vector or the Kalman gain

IR V0
O =TT g P - DA 8
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3. the parameters arc then updated through

f(t) = 8(t — 1) + K(t) * ¢(t) (3.9)

4. then the covariance matrix is updated

P(t) = P(t - 1) - KQIP(t - DHOIT (3.10)

P(t), the covariance matrix, is a diagonal matrix. In the SL§ method this matrix is

defined Dby:

P(t) = [T @] (3.11)

the covariance matrix has a great effect on the performance of the RLS algorithm, as will

be discussed later.
3.3 Using the RLS Algorithm

A developed FORTRAN program, presented in Appendix B, was used to simulate
the RLS algorithm. Now, to operate this algorithm, the model order must be assumed,
then the initial parameter values are chosen. Another important object is the covariance
matrix mentioned previously, an initial value of it is required. P(i} is a square matrix
of dimension n X n ,where n is the number of parameters to be estimated. The size of
this matrix is related to the uncertainty in the present model, where a large value of P(t)
means that the current model is not an adequate representation of the process and hence
if new rich dala is received then the algorithm will be motivaled, and therefore the model

is updaled. Usually the P(1) matrix is chosen initially to be diagonal of the form:

P(0) =ml (3.12)
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Where m is a positive scalar and I is the unit matrix.

3.3.1 Initial Covariance Matrix Size

The following model will be considered to see the effect of initial covariance

matrix size on the performance of the algorithm:
y(t) = —ayy{t — 1) + hu(l — 1) -+ hu(t —2) (3.13)

where a; = —0.5, by = 1.6 and b, = 1 are the actual values of the parameters. The input
U(t) was a zero mean while noise and the initial paramelers vector was chosen to be:
6(0) = [0.,0.,1.]. The effcct of initial P mattix size on the estimator behavior is seen in
Figures 3.3 and 3.4 where the effect of various choices of P(0) is shown. It is evident that
a larger initial value of P(0) leads to quick correct estimation, this is shown in Figure
3.3 where P{0) was chosen to be: P(0) = 100]. Figure 3.4 shows the use of a small
covariance size: P(0) = 0.11. The estimator fails lo estimate correctly. The reason can
be explained using Equation { 3.9) . In this equation, and in order to identify new @,
values of ¢(t) and K{t) must not be small. But, K(t} is directly proportional fo the size
of P(t), so a higher size of P(t) enhances the cstimator to identify provided that there is
an etror €(t)

Not only the P(t) affects the value of the gain veclor K(t), but also the level of

cxcitation contained in ®(t). This is discussed in the following section.
3.3.2 Level of Excitation

In order for Uhe estimator to work properly the input/outpul data should be exciled

(i.e. control signals should be changing and large enough to produce a noticeable effect
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on the oulput). Poor data leads to bad estimation or failure in converging to the correct
parameters values. This is obvious from Figures 3.5 and 3.6 . The same previous model
was estimated with the same initial conditions. However Figure 3.5 shows the behaviour
of the estimator with U(t) chosen to be constant : U(t) = 0.1. It is obvious that Low
excitation leads to failure in identifying the model correctly. In Figure 3.6 the input was
a unit varjance noise. It is scen that in few samples the correct model was identified.
Mathematically this can be explained using Equation { 3.9) whete the value of the K(t)
vector due to poor data will tend to zero in the first case. Therefore the estimated
parameters will not be updated, even if there is a large error in parameters.

Level of data excilation affects the size of the covariance matrix during operation,
where a high excited data leads to a decrcase in the P(t) size each time a new rich data is
received. So, with time, the effect of K( t) on Equation ( 3.9) will be less effective. And,
if the dynamics of the process change, the estimator will not have the ability to track the
changing parameters. To overcome this deficiency, ihe algorithm is modified as will be

discussed in the following seclion.
3.3.3 Change in Process Dynamics

A required property of an estimator is the ability to track parameter changes which
reflects a change in the dynamics of the process. The algorithm in its given shape will
not do the required function, because the covariance matrix will keep decreasing in size
with time and sometimes one or more of the diagonal elements may become zero valued
and will never move from there. Thereforc the algorithm must be modified to prevent
P(t) from becoming too small. This is achieved by the introduction of the exponential

forgetling factor (8). The main objective of this factor is to give more consideration to
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new data (i.e. to forget past data). This factor changes the algorithm slightly.

The new cost function equation to be minimized is given by:

J = iﬁ”-‘e’(t) (3.14)

i=1

Where 8 is the forgetling factor. The eflect of forgetting is clear in the above equation,
as time increases, past data is multiplied by a smaller factor(BY ~*), therefore giving the
new data more importance. Equations ( 3.8) and ( 3.10) respectively change to:

Pt — 1)¢7(t)
BT FOPE— DD (3.15)

K(t) =

and

P(ty = (P(t — 1) - K(©)IP(t = DS)])/P (3.16)
the value of B usually is chosen lo be between 0 and 1, its role is obvious from the
last equation, where it helps in increasing the size of the covariance matrix since each
element in P(t) is divided by a fraction, which will improve the estimation efficiency. To

demonstrate the eflect of the forgetting factor the following model is considered:
y(t) = —ary(t — 1) + bou(t — 1) + bu(t —2) (3.17)

where a; = —1.,bp = 0.75 and b; = 0.5 are the actual values. The parameters were
changed as follows:at sample 100 a; was changed to —0.7 and at sample 200 by was
changed to 1.3. Initial 6 was set lo [0.,0.,1.] and P(0) == 100/.

Figures 3.7, 3.8 and 3.9 show the eflect of various choices of forgetting factor, it can
be seen that by decreasing the value of A below 1 (i.e. more forgetting), better estimation
and tracking is oblained. in the case where B = 1 (i.e. no forgetting), see Figure 3.7, the
estimator is not capable of tracking to parameter changes. This is due to the very small

size of P(L}.
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The forgetting facter use is not always fruitful. Under certain conditions it leads to

the phicnomenon known as estimator blow-up.

3.3.4 Estimator Blow-Up

A problem arises when dealing with constant forgetling factors, with a process suf-
fering from periods of poor data, for examnple during regulation or at steady state, il is
known as the blow-up of the estimator [47). The reason for this can be seen by consider-
ing Equation ( 3.16) where the second term on the right hand side becomes zero or close

to zero (i.e. when the data is not excited) and the equation becomes:
pP(t) = P(t - 1)/p (3.18)

"This means that the covariance matrix will be divided each time by a fraction, and
increases without limit successively. After some time the estimator becomes sensitive due
to the large size of P( t) leading to rapid movement of the estimated parameters when
new rich data become available. This phenomenon may lead to failure or instability in a
self-tuning scheme.

To illustrate this phenomenon a process given by the model is estimated:
y(t) = —ayy(t — 1) + bou(t — 1) + bu(t — 2) + €(¢) (3.19)

where @y = —1.,bp = .75 and b, = .5 . Where at sample 200, b was changed to 1.3. Up
to sample 400 the input signal was a white noise, but after that it was set to U(t) =0.1.
The blow-up phenomenon is shown in Figure 3.10, it is seen that the estimator performs
well initially, and the forgetting factor helped in parameter tracking, after a long lime with
the low excitation input, the covariance becomes very large due to successive increase, it

results in an abrupt change in the parameter eslimates in an uncontrolled way.
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b solve the problem of blow-up, 2 variable forgetting factor scheme is adopled.
3.3.5 Variable Forgetting

Another modification is made to tlie estimation algorithm, which will prevent the
covariance matrix from becoming enlarged at periods of low excitation. The equation

which govern this is given by Fortescue [48] as follows:

[L— &(t - 1)$(¢)"]e*(t) (3.20)

o

plt) =1-

where o is a design paramcter chosen according to operating conditions of the process,

mainly the noise content. Where the form of the equation was chosen to give a forgetting

factor value close to 1.0 when the excitation in data is poor. Furthermore, the forgetting
factor depends also on the error between estimated and true parameters, a higher error
leads to decreasing the forgelling factor value. o is used in the equation to cope with
the noise content in the process (i.e. to decrease the sensitivily of the forgetting factor
to the noise cffect). Use of this form of forgetting factor will prevent the blow-up of the
estimator in addition to improving the tracking capability of the eslimator provided that
a proper choice of ¢ is set. It can be deduced from equation ( 3.20) that at periods of

low excitation le value of B(t) will be close to 1, so this will not allow the covariance

matrix from increasing in size at that period.

The effect of introducing the variable forgetting factor is illustrated in Figure 3.11,

where the same example which was used in the blow-up section is employed here again.

By comparison with Figure 3.10, it is seen that the blow-up problem is eliminated in the
poor data region, due to preventing the covariance matrix form being large. Moreover, the

estimator was able to track the parameter changes at the initial stage of the experiment
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due to presence of data excitation. A value of (.1} was used for ¢ in this example, however
a lower value of ¢ will increase the sensitivily of the forgetting factor.

This scheme must be applied with care in presence of noise, since ¢(t) will have a
remarkable value, this error will not be distinguished from the true error. It will result in
decreasing the forgetting factor value and therefore increasing the size of the covariance
matrix, resulting in large parameter update every sample. The problem can be handled
through suitable choice of o, where a higher value will reduce the sensitivity of the

covariance matrix to changes in the input.
3.3.6 Noise Effect

For a deterministic model the estimalor converges to the correct values in few samples
provided that the data is sufliciently excited. In the case when the process is corrupted
by noise, the estimator will not converge to the correct values. This fact is clear by
considering Equation ( 3.9) where noise will be included in the ¢(t) term which well affect
the model update at ecach sampling instant. Increasing the noise variance will increases
the deviations of parametcrs, this is shown in Figures 3.12 and 3.13 . Where in Figure
3.12, the noise variance was (1) , and in Figure 3.13 the variance was (3.)

Noise effect can be ‘reduccd by decreasing the sensitivity of the estimator, this is
achieved by :choosing a small covariance matrix initially, bounding the forgetting factor
close to 1.0 or in the case of using the variable forgetting factor scheme by choosing a
high value of o.

A further procedure to reduce the effect of noise on the estimator is to employ esti-
mator jacketting. In this scheme the estimator is switched off when the error between

the true output and the set point is less than a certain small value, where data available
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at this region is mainly due to noise [44).
3.4 Conclusions

The RLS method includes a lot of design parameters. Choice of these parameters
depends on the controlled process nature. Injection molding is characterized by nonlin-
earity and time-variation, in addition to noise corruption. So, when applying the GPC
to Injection molding process, proper choice of the RLS parameters is required to provide

the GI’C with a good model, otherwise the controller may fail in its function.
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Chapter 4

GENERALIZED PREDICTIVE
CONTROL (GPC)

As mentioned before, the GPC is an eflective control algorithm, it has many tuning
knobs which give the controller its flexibility in dealing with various practical situations
[13, 14, 15, 16].

In this chapter, the algorithm will be briefly reviewed, where the details are present
in rcferences 13, 14, 16]. Simulation examples are included to show the properties of the

controller.

4.1 Process Model

One of the important {eatures of the GPC algorithm, is the assumption of a CARIMA
model of the process. This model builds an integral action into the feedback loop which
ensures rejection of load disturbances and leads to zero offset in the output {13, 44]. The

CARIMA model was given in the previous chaptier as:

Az Vy(t) = 2Bz )u(t — 1) + —q—(—i%m (4.1)

Where the equation parameters and polynomials are as defined in Chapter 3.

In the above model, and in order to make it a deterministic one , the order of the C
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polynomial is set to be 1, therefore the model becomes [13]:

A" Vy(t) = 4Bz u(t - 1) + %ﬂ | (4.2)

where the ellect of C polynomial is absorbed in A and B polynomials.

4.2 Long Range Prediction

To derive a j-step ahead predictor based on the CARIMA model , the following Dio-

phantine identity is considered {13]:
1=E;(z)A(z"MA + 277 F(z7") 4.3)

Where E; and Fj ere polynomials of order j-1 and na respectively, which can be deter-
mined given the A(z~!) polynomial. Combining equations { 4.2) and ( 4.3) gives the

prediction equation [L3]:

y(t + 5} = G;Bu(t + 5 — 1) + Fyu(t) + E;¢(t + 1) (4.4)
Where y(t 4 j;) is the predicted output after j time samples in future and based on data
up to time t and G;(27') = E;(z7')B(27!), a Polynomial of order nb + j — 1. The last

term in the prediction eguation will be in fulure and unknown in the prediction range

since the degree of E; is j — 1. The optimum prediction of y is obtained by assuming

that this terms is zero [13):
¥t + 7le) = GjAu(t + 5 — 1) + Fy(t) (4.5)

In the GPC algorithm,the prediction is extended to become a multi-step prediction,
where a set of future outputs is predicted in the range: 1 to N , based on recursion of

equation ( 4.3) over that range. The result is a set of future predicted outputs with a
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form identical to that of equation ( 4.5). The first term on the RHS of this equation
is divided into two parts at each prediction step, separating between known and future

terms according to the following identity:
Gi(z71) = Ci(z") + 277 Gy(=7") (4.6)

where: Gj is a polynomial corresponding to the future terms, and (-}’,- is another polyno-
mial that corresponds to the known terms.

let:

f(t +37) = G;Au(t — 1) + FY (t) | (4.7)

which represents the known terms.

The predicted outputs for all future steps in the prediciion range can be combined in

vector form as follows:
Y o= [y(t+ 1), y(t +2),---,y(t + N)JT (4.8)
Similatly, the other terms are written as:
U = [Au(t), Au(t + 1),---, Au(t + N = 1)]T (4.9)

F=U@+0,/(E+2), -, 0+ NI (4.10)

and consider a set point vector W, over the prediction range:
W= [w(t + 1), w(t +2),---,w(t + M) (4.11)
so equation ( 4.5) in vector form is given by:

Y=GUf (4.12)
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where G is a matrix of dimension N x N, it is a lower triangular matrix of the following

form:

4 0 ‘e 0
T2 &1 . 0

;IN .;;N—l ..9'1
4.3 The Controller

GPC is a controller based on optimizing a cost function. This cost function is given

by:
N2 N2
J(NL,N2,X) = E[ 3" &{t +7)+ A Av’(t + j —1)] (4.13)
j=N1 =1 :

where E means expectation over the prediction range, which is conditioned on data up

lo time t, e is the difference between set point and the predicted output defined by:
et +5) = wlt +5) ~ 3t +3) (@.14)

NI is the minimum prediction horizon, N2 is tl1e,;.maximum prediction horizon, A is the
control weigliting scalar factor and w(t+j) is the sct point in future, which may be known
a priori or assumed equal to w(t).

In the above equation, prediction is performed in the range N1 — N2, and a set of
projected control increments is decided. While the control signal is weighted by a positive

scalar A. Combining equations ( 4.12) and ( 4.13) [13] gives :
J=(W ~GU = \T(W - GU — f}+ \0TU (4.15)

minimizing this equation with respect to the control increments vector gives the projecled

control increment vector U, where the first element in this vector is applied to the process
[13):

Uppe = (GTG + AN1GT(W = f) (4.16)
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where 1 is the unit matrix, GTG is a matrix of order N2 x N2, so al every sample a
matrix of order N2 x N2 will be inverled. This needs a large computational capacity
cspecially for large values of N2. Therelore, the use of the control horizon will decrease

the compulational burden, as will be discussed in the next section.
4.4 'The Control Horizon

Use of the control horizon is an interesting feature of the GPC, it mecans thal after an
interval NU, the control increments AU/ will be assumed to be zero. This equals applying
an infinite control weighting on future control increments. In the cost function, this is
acliieved by replacing N2 by NU in the sccond summation on the right hand side. So,

the cost function becomes:

N2 NU
J(N1,N2,NU,3) = E[ 3 €(t+35)+A Y. Bu?(t +j—1)] (4.17)
j=N1 i=1

This assumption will simplify the controller calculations, since the order of the G matrix,

mentioned previously, becomes (N2 — N1 4 1 x NU) as follows {16}:

gn gni-y ... O

. {INHI {]M 0

N2 gN2-1 ... GN2-NU41

In particular if NU=1, this means that equation { 4.16) will no longer include matrix
inversion, since the order of GTG will be 1 x 1. Morrover, choice of NU value has an
cffect on the oulput of the process, where a small value of NU will give sluggish response,
but choosing higher values a more active control is obtained.

It was shown thal the objective of the controller is to force the process outpui to
follow a specified set point profile. I[lowever, at each sample, the GPC petforms the

following sleps:
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1. The parameters of the process model are identified using the RLS method

2. The predicted outputs in the prediction range are calculated

3. The cost function with the specified paramecters is minimized with respect to future

control actions, and hence the optimal future control vector I:f.,p, is obtained.

4. The first clement in [-f,,,,g vector is used as an input to the process, then the data

vectors are shilled and the calculations are repeated at the next sample

4.5 Design Parameters

N1,N2 and A form the design knobs of the controller in addition to the control horizon
(NU). The minimum prediction herizon (N1) is related to the time delay, kd, of the
process, il kd is known, then N1 is set to be cqual to kd or more.

N2, the maximum prediction horizon, is chosen to include all the transient response
which is aflected by the current control signal {At least: N2 > 2n; — 1), and it will be
betier if chosen up to the rise time of the process. MHowever, a value of 10 is usually
suflicient to lead to stable control [13].

A, the control weighting factor is used where control action is important. It is used
as a fine tuner for the control signal and the response. Moreover, it may help in avoiding

the inversion of a singular malrix in equation ( 4.16).

Cerlain choices of these paramelers produces control performances similar to that of

other control algorithms such as Pole- placcment, GMV and others [13, 15, 16].
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4.6 Data Filtering

In the model considered in the GPC algorithm, equation ( 4.1), it is usually not easy
to estimate the ba.mmeters of the polynomial representing the noise components (C (z71))
since noise is unknown and time-varying [11, 42, 49]. However by replacing (C (z71)) by
a fixed filtering polynomial (7'(z~1}) will help in detuning high frequency components
dominated by noise, load disturbances, nonlinearities and unmodelled dynamics [44}.

Rewriting equation ( 4.1) as:

A (e) =+ B e - 1) + TE X0 (4.18)

Including the T-filter will change the algorithm slightly: The Diophantine equation cor-

responding to the new model will be [13]:

T(z™) = E;{(z")A(z"M)A + zIF(z7Y) (4.19)
the predicted output becomes:

gt +il) = Giaud (t 45— 1) + /() (4.20)
where »/ andy’, means filtered quantitics. The partition of G; will be done according lo
the following identity:

G;(z71) = T(z")Ci(z~") + 27 G;(z7") (4.21)

the remainder is the same as that of the previous case.

This improves the performance of the GPC, since the filter cuts the high frequency
components oulside the bandwidth of the process [46]. This leads o a noticeable less
active controller output. Furthermore, it affects the behaviour of the eslimator, because

the estimalor reccives attenualed data, therefore better estimation is obtained.
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Choice of the T-polynomial has no gencral ule, however in previous applications |13,

45, 49] a first order polynomial was adequatc.

Tuffs {19] made the following choice:

T(z™') = 1+ t27"! (4.22)
where t; = ~(1 — k/tr) = —0.8, where h is the sampling lime and tr is the number of
main samples in which to reject 63 percent of a step-like change in load on the process.

Alassafl [44] madc the choice of the T-polynomial as a low-pass filter having a cut-off

frequency related to the open-loop bandwidth as:

1 1
- . 4.23
T(s) ‘3—?—3 +1 ( )

where T(s) is the conlinuous version of the T-filter and wn is the underdamped process

natural frequency.

The corresponding discrete representation of the T-filter using Zero Order Hold (ZOH)

is:
—hwn

1 1—e

T(z71) ~ 1— e 5" o

(4.24)

in this study the T-polynomial will be chosen to be a first order polynomial .
4.7 Simulation Examples

The aim of these simulation examples is to show the behaviour of the GPC, its design
parameters role and the T-filter role . Simulation was done using 2 FORTRAN program
written as part of this research. A list of this program is present in appendix C.

In all simulation examples the set point was a square wave of amplitudes 30 to 70
with a period of 50 sampling times. The control signal was bounded between —100 and

100. The default settings of the controller are chosen to be: {.5,1,10,1] for [A,N1,N2,NU].
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To demonstrate the effect of GPC parameters on the performance and not to conluse

it with the cffect of the identification technique, the estimator was not employed in

the experiments except the experiment which deals with a process with changes in its

dynamics.
e Nole of A
A model of the form:
y(t) 142271
= 2
uw(t) 1-.9z71 (4.25)

was used in this experiment to sec the effect of control weighting. Figure 4.1 shows
the performance of GPC withoul control weighting (i.e A=0). The control output
is active especially at the points of changing amplitude. But, tight tracking of the
set point is obvious. Figure 4.2 shows the performance when using A (A=0.5), it
is obvious that the control output is less active than the previous case, though a.t
the cost of a significant oscillations in the response. Increasing the value of A will

give less active control and more slower response.

e Role of NU

A model of third order was used to illustrate the role of the control horizon.
The model considered is:

y(t)  S+3z7 - 15272 4 4273
u(t)  1+.1z7' — 5272 - 3278

(4.26)

Several values of the control horizon were used as follows: at samples [1,75,175,275,375]

the control horizon was set to {1,2,3,5,10] respectively . Where the other controller
settings are chosen to be:[0.5,1,10)] for [A\,N1,N2]. Figure 4.3 shows that by increas-

ing the control horizon NU a more aclive control is achieved. This is true due {o
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e fact thal when the wlue of NU is increased then the consleaints on the control
signal are decreased. Therefore, the control effort will be higher. Increasing NU

more than 3 makes no apparent difference on the closed-loop behaviour.

If the model order is not correct, and NU > 1, this will lead to instability (13, 44).

Role of N2

To show the cffect of N2, a first order model was applied, the model is given by:

Y{z=!) 14227

U(z-1)  1-—.9z71 (1.27)

At samples [1,75,175,275,375] N2 was sct to (1,2,5,10,20] respectively. The other
parameters were chosen to be [0.1,1,10] for {\,N1,NU]. Figure 4.4 shows that in-
creasing the value of N2, a more slower response is obtained. At the beginning of
the run when N2 = 1, the role of A was dominant which causes the oscillations
in the output. Increasing the prediction horizon gives the controller more time to

correct the present crror, and this is the reason for the more sluggish response.

Role of T-filter

Figure 4.5 declares the important behaviour of the T-filter. The same previous
model was simulated, noise of variance (5) was added lo the output all the time.
Data filtering was not performed during the first 250 samples (T=1). After that
the filter was put on, choosing the T-polynomial to be (T =1~ 8z71). The result

is evident: attenuated control action. The T-filter did not  affect the set point

tracking response of the process.

Time-variant process

"In most practical applications the dynamics of the process are not stalionary

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



100
. 80
A
~
3 GO
3
g 40
& 20}

GO
§
£ 20
-

& =20
S

-60

~100

54-

w(t)

P

7 f—

I B

|

o ’NUJW‘L e

100

200

300 400

Uime Julcrvals

Figure 4.4:  Eilcct of the Prediction Hotizon{N2) .

500

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



Control Action

Response & Set Point

100

80

60

40

55

20 ¢

}/WW“'\ \FW W

o

i

i

o
,lJ‘fWL{M\,u J"F"WML” y J‘J W

100 200 300 400
Time lutervals

Figure 4.5:  Eflect of the 'T-T"olynomisl.

500

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit



56
(ie. change with tmc). GP'C needs an accurate modl of the process in order
to do its function, therefore the estimator must track these changes cc';rrectly. In
this example the estimation was performed on-line with control. The estimator
was jnitialized by fo = [0,0,---,1] , the covariance matrix was set to 100 initjally.
The variable forgetting factor is used with ¢ = 0.1 . A second order model was

employed:

y(t) _ lh "}4 blz—l + bzz_z (4 28)
‘I.L(t) T + a3 2t a.zZ_z '

where @; = -0.8,a; = —0.1,bg = 03,6, = 0.5 and b = 0.2 . The parameters
were changed as follows: at sample 80,5, = .8, at sample 170,a; = .1, al sample
210,b, = —.3 and at sample 260,¢, = —.9. Figure 4.6 shows the performance of
GPC and its capability of handling a time-varying process with on-line estimation.
At points of changing the paramcters a noticeable error in the response is scen.
This is due to changing the dynamic gain of the process. The estimator behaviour
is shown in Figure 4.7 . It is clear that the estimalor performance is fair, the

estimator was able to track the paramelers variation with small errors.

Time-varying nature is a property of injection molding process, and more complex

than the above example due to nonlinearity and other factors. Therefore, it will be

a true test of the adaptivity of the GPC algonithm.

4.8 Conclusions

These examples show some of the practically desired properties of the GPC con-
troller, in which GPC proved its capability in handling several problems , provided

that the design knobs are chosen appropriately. The data filter included improves
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the controller’s behaviour in rejecting noise. In addition, GPC has the ability to

deal with a time varying process based on the identification of the process model

)

recursively.

In the following chapter,this controller is to be examined by applying it to control
the cavily pressure in Lhe injection molding process through simulation. And care

should be taken in choosing the tuning knobs of the GPC and the RLS eslimator,

due to the complex nature of the process.
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Chapter 5

APPLICATION OF GPC TO THE
INJECTION MOLDING
PROCESS

This chapter presents the application of GPC to control the filling stage of the injection
molding process using cavily gale pressure. The deterministic model of cavily pressure
that was developed by Abu Tara |2] will be used firstly in the simulation. Iowever,
this model suffers from some deficiencies, since it does not reflect the nonlinearity and
titne-variation of the proccss.

Thetefore, and as a part of this study, a dynamic model of cavity pressure in the filling
stage is obtained through identification. The model derivation is based on real data of
cavity pressure and the corresponding control valve opening values taken from the work
of Abu Fara [2}. The parameters of this model are not fixed, they are changing with
time. Which shows some of the nonlincar and time-varying behaviour of the process.
This model is to be used to evaluate the GPC in control of the cavity pressure.

To make the model represents the actual process more adequately, time delay and

noise in the cavity pressure model is added and the response of GPC is studied.

The results of the GPC application are compared with that of a digital PID controller.
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I the following seclion, we start with the application of the controllers to the fixed

model.
A1

5.1 Appl.ication to the Fixed Model

The deterministic model which was developed by Abu Fara [2] is considered here to
represent the dynamics of cavily gate pressure related to the control valve opening. The

model was introduced in chapter 2, and represented by the equation :

-1 -2 _ -3 .
Pc(t) 014277 0.17z 0.3z 5.1)

u(t)  1-19127" 4091277

This model was used in a2 simulation study to evaluate the performance of some
conventional controllers such as the PID by Abu Fara [2] in control of cavity pressure.
This controller will be examined here.

The continuous form of the PID controller is given by [10]:
1 de
u(t) = Kele(t) + = [ e{t)dt + a7 (0) (5.2)

where:
U(t) is the controller output at time 1.
K. is the controller gain
¢(t) is the error (w(t)-y(t)), the difference between the sei-point and the measured output.
1;,r4 arc the integral and derivatives times, respectively.

A discrete form of the PID controller can be obtained by replacing the integral in
the continuous form by a rectangular integration and replacing the derivative by a finite

difference (2, 10]. Thus, if the control action is digitally calculatled every h seconds then
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a discrote form of the PID controller is given by:

u(t) _tta 2t 4 apz? (5.3)

e(t) 1-21

where:
00=Kc[1+-2-+z,‘f
ay = —IC |1 + 2%
az = K. 3
The values of the PID controller parameters used are the optimum sellings which
were calculated for the same model and given in reference (2] as follows:
K. =0.782 %coni-irolvalveopening/psi
1; = 0.062 sec

14 = 0.009 sec.

On the otlier hand, the experiments of GPC employ the RLS estimation algorithm

with variable forgetting factor to obiain on-line estimates of the model parameters. The

initial settings were:
8(0) = [0,0,0,1]
P(0} = 101
Bmin = 0.9 .
Four paramelers were estimated instead of five, since the denominator of the model

cquation contains a difference operator (A =1 — z~!) due to the ramping of the cavity

pressure, the process model can be writlen as:

Pe(t)  0.14z7' 4017272 — 0.3z73 (5.4)
u(t) Al - 91z2-1) ’

As a first application, a ramp followed by a step-change and another ramp set-point
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profile is chosen to show the difference between the PID and GPC performances, and
to compare with the results of Abu Fara [2]. Figure 5.1 shows the response of cavity
pressure under PID control. The sampling time is chosen to be .01sec. The Figure shows
the filling stage of the process excluding the early filing period in which the delivery
system is filled. Tt is seen in the figure that the PID performed well, since the suitable
paramcters were chosen in [2], except at the initial stage and the step region, where the

PID controller needs a long time to track the set point correctly.

Figure 5.2 shows the cavity pressure response using the GPC. The parameters of the
GPC are chosen to be: [0.1,1,4,2) for [\,N1,N2,NU}. The GPC performance is much better
than that of the PID. The initial stage performance is much better than that of the PID.
Moreover , the step-change behaviour of the GPC is completely different from that of
the PID. The GPC started to compensate for the step change before its occurring, with
a small error, due to the Jong-range prediction property of the GPC.

A performance index which measures the optimality of the control algorithm is adopted
to serve as a comparison formula between the conlrollers. This performance index is cho-

sen as follows:

pPQ = Jf}l(y ~—w)? + Au?] (5.5)

Where:y,w,Au are the systcm response, the set-point and the control increment respec-

tively. The first term in the sum represents the error between the response and the

set-point, where the second term corresponds to the control signal activity. A smaller
value of the performance index means betler controller performance.

This performance index is calculated for both controllers, the values are shown along

with the figures. The PQ value of GPC is lower than that of the PID. This shows that
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the performance of GPC is better than the PID.

‘The set-point profile used was chosen for testing and comparison purposes . But
in real application the pressure profile determines the quality of the injection molding
articles . A set-point profile identical to the true trend of cavity pressure in an actual
operation is adopted , it is assumed that this set-point profile will give the desired quality
of the plastic articles . Figure 5.3 shows the performance of the PID controller with this
set-point profile, it adequately follows this profile, in addition to the smooth control signal
variations. This performance of the PID is adequate because of that the process model
used to represent the cavity pressure is fixed. Furlhermore, the optimum setlings of the
PiD controller are used. The results of GPC application are shown in Figure 5.4 with
the controller settings values are [0.5,1,3,1] for [A,N1,N2,NU]. It is as good as that of the
PID controller except at the initial stage. The initial excursions in the control signal are
due to the poor estimation of parameters initially, but after that the control signal and

the response are satisfactory.

Performance index values indicate that the PID is slightly better than the GPC due

to the mentioned reasons. However, this is en advantage for the GPC, because it gave
the same performance of a well-tuned PID .conl.roller, without any prior knowledge of the

process.

Figures. 5.5 and 5.6 shows the simulation results of PID and GPC respectively as-
suming a time delay of two sampling periods [2]. The PID results show an oscillatory
behaviour in the control signal and in the response. This is attributed to the presence of
the time delay which adds complexity to the dynamic behaviour of the process, leading

to deluning the PID controller.
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The GPC simulation results for the same case are shown in I igure 5.6. The paramelcrs
are cliosen to be [0.5,3,4,1] for [A,N1,N2,NU]. The set-point tracking is similar lo that of
the PID. At the inilial stage the control output is slightly active due to poor estimation.

Petformance index value of GPC is smaller than the PID value indicating a better
petformance. However, the performance of the GPC can be altered by manipulating the
tuning knobs.

Figure 5.7 shows that with increasing the prediction horizon (N2), setiing its value
to 10 and keeping [A,N1,NU] at {0.5,3,1], a smoother control output is obtained, but the
sct point tracking at the initial stage is not tight. However, the performance index value
shows in digits the less suitable control obtained due to increasing the control horizon.

Figure 5.8 shows the eflect of increasing the control horizon (NU). The values of
[X\,N1,N2,NU] are chosen to be [0.5,3,10,2]. In this case, the set pint tracking is betier
than the previous case due to the more active control output. The performance index

value ensures the modification,

To show the effect of control weighting the following values [0,3,4,1] were chosen for
the controller parameters [A,N1,N2,NU]. Figure 5.9 shows thar the decrease in the value
of the control weighting gives more aclive control{compared to Figure 5.6). This is dear
frotn the figure, and leads to increasing the performance index (PQ) value remarkably.

The performance index value can help in deciding, which set of the controller param-
clers should be chosen.

The noisy nature of the injection molding process inspired the addition of noise with
variance (1) to the system output at cach time instant. Figure 5.10 shows the results of

PID controller application. The PID controller do not rely on an on-line model estimation,
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it considers the noise as an error thal lo be corrected. F igure 5.1 shows the applicalion

of the ‘GPC controller without using data filtering. The sensitivity of the estimator was
decrcased by sctling: P(0)=.1 and A = 0.9935, to minimize the effect of noise. But the
ellect of noise on the estimator is remarkable as seen from the figure. The dependency of
GPC on the qualily of the estimated model causes some excursions in the control signal,
since the estimation is not effeclive in the presence of noise, this was discussed in chapter
3.

The performance of the GPC is improved by use of the data filter. This is obvious
from Figure 5.12 . The use of the T-filter improved the estimation quality which effects
the GPC.

The performance index values show the improvement in GPC performance with data
filtering compared to the case without filtering. In addition, the PID was not be.tter too
much than the GPC (without filtering) as indicated by the PQ values.

The deterministic model used was useful in examining the controllers and in describing
part of the dynamic behaviour of cavity pressure. But it can’t be considered as a true or
a corﬁplctc representation of the dynamic behaviour of the cavity pressure. Becausc it do
not reflect the nonlinearity and time-variation. So, a more realistic model is needed, which

gives more information about the dynamic behaviour of the process. In the following

section, Lhe development of such a model is discussed.

5.2 Identification of a Time-Varying Model for Cav-
ity Pressure

To evaluate the GPC with a more realistic model than the deterministic one, a group

of data files containing real readings of cavity gate pressure and control valve opening
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were taken from the work of Abu Fara [2]. These dala files were used for stochastic
identification of cavity pressure [2]. The input signals to the control valve opening were
Pseudo-Random-Binary-Sequences (PRBS). This type of signals is popular for the iden-
tification of system dynamics, duc to the advantage of these signals in exploring the

dynamic modes of the process.

The idenlified model structure is identical to the form of the deterministic model,

given by:
Pe(t) bz 4+ bz 4 bz Bz bzt 4 by
= = (5.6)
u(t) A(l + az-1) 14 ayz-! 4 ay2-2
Where: a3 = —a and a; = a —- 1.

The parameters of this model were identified recursively using the RLS estimation
algorithm, for several data files representing different test runs. The identification results
of one of the data files are shown in Figure 5.13 . The other experiments show the same
trend for paramelers estimates.

Considering Tigure 5.13, the parameters of B(z7!) polynomial (i.e . b0,bl and b2)
can be approximated into two intervals as follows: in the interval t=.8 to t=1.14 seconds
the B(2~!) parameters are:
bo =0 =b, =01
and in the interval t=1.14 to t=2.10 seconds tliese parameters are as follows:
=025 b =-0.14
b, = 0.05
averaging is used in these two intervals for the B(z~!) parameters.

The parameter a is changing continuously with time, it can be approximated by a

first order line with the following form:
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a = 142 — 0.81¢.

To check the model accuracy, the cavity pressure values were reconstructed using the
model developed with the same input signals (PRBS) present in the data file. Figure 5.14

shows the good agreement between the real cavity pressurc values and the reconstructed

ones.

5.3 Application to the Identified Model

The PID controller is applied to control the cavity pressure using the identified model.
The parameters of the PID are the same parameters used in the previous section. Figure
5.15 displays the results of PID application. It is evident that the PID with its fixed
parameters can't track the set-point profile as required. Oscillations are seen in the
response and in Lhe control signal too. The performance of the PID controller means
that the controller scllings are not the optimal ones for all the operaling conditions of

the process, i.e. the controller needs to be retuned for each operating condition.

Gain scheduling for the PID can be used by choosing certain controller parameters
for each operating condition. Abu Fara [2] used this scheme by dividing the filling stage
into three parts. In each part, the PID parameters are different from the other parts.
Better performance than the fixed PID was obtained.

GPC behaviour is shown in Figure 5.16 with the parameters [A, N1,N2,NU] are chosen
as [0.5,3,10,2],, the exact tracking of the set point is obvious, except at the beginning
of the experiment and in the region of changing the gain of the process (al t=1.14 sec.
the B(z~') parameters change) due to poor estimation of the model. The Figure shows

the model parameters and the estimated ones, B(z~!) parameters are identified almost
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exactly, but A(z1) (a; and e are plotled) paramelers ate not, since they are changing

with time continuously, and data excitation is not suflicient {o activate the estimator
enough. But, with non correct estimation of the A(2~!) parameters the GPC was able
to function adequalcly. This is due to the presence of the A operator in the model which

decrease Lhe effect of A(z7!) paramelers on the eslimated model. Moreover, it is usually

suflicient to estimatle a model that approximalely represent the process.
Petformance index values show the wide difference between the two controllers.

To see the eflect of noise on the performance of the controllers with the developed
model, noise with variance (1) was added to the system output. The behaviour of the
PID for this case is shown in Figure 5.17, it is obvious that the PID produces an active
control output to follow the required sel-point in addition to the oscillatory behé.viour
due lo presence of scveral factors: changing dynamics, time delay and noise. On the
other hand, the GPC was applied for the same case with data filtering, the performance
was satislactory as what can be scen in Figure 5.18, the output follows the set point
much better than the PID. The noise effect was decreased by using data filtering. The
T-polynomial was chosen to be (I' = 1-0.827"), leading to better estimation and control

aclion.

The final application of the controllers is done using the identified parameters shown

in Figure 5.13, i.e. the identified parameters at each instant were used without approxi-

mation or averaging. Figure 5.19 shows PID application to this model, it is obvious that
the controller was unable lo track the set-point at the initial stage and produces large
oscillations. But with time, the performance of the PID is improved indicating that the

controller sctiings are adequate for those operating conditions. The performance of GPC
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is shown in Figure 5.20. The controller parameters [A,N1,N2,NU] are chosen as [5,3,10,1].
The GPC still gives better performance than the PID. Dala filtering is used in this case

»

and helped in improving the performance of the GPC.
5.4 Conclusions

The resulis of the simulation study presented in this chapter have shown the feasibility
of using the GPC control algorithm to achieve control over cavity pressure in the injection

molding process.

On the other hand, it was scen that the PID controller can give satisfactory perfor-
mance provided that the right seitings of the controllers are chosen, which is not an easy
task in practical applications.

The GPC is a nice algorithm with a lot of tuning knobs which can be manipulated to
give e certain behaviour. However, the main problem with the GPC is associated with

the estimation quality, which will affect the performance of the controller,
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Chapter 6

CONCLUSIONS

The complex nature of the injection molding process makes it difficult to control
the process adequalely using conventjonal controllers such as the PID one, which is a

good controller provided that it js well tuned. In addition, the PID can’t be used for

multivariable control purposes,

This study have introduced an advanced control algorithm, the GPC, to the injection
melding process. The results show that the performance of this controller is better than
that of the PID and docs not need retuning of its parameters when the dynamics of the

process changes. Moreover, the tuning knobs of the GPC were used to provide distinct

closed-loop behaviour of the controller.

The identification algorithm plays an fmportant role in the controller behaviour, since
the GPC calculations depends on the identified model of the process. So, proper set of

the estimator parameters should be chosen according to the process properties.

The already developed models are useful for understanding the behaviour of the pro-
cess, and lo test the control strategies,they do not reflect he nonlinearity and time-

variation of the process. S0, complete dynamic models are needed which represents the

process more accurately. These models should incorporate the inferactions belween the

- Center of Thesis Deposit
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process variables.

Fulure research which extends the ap

*

plication to control overall process (all stages) is

needed, through both simulation and practical evaluation. Furthermore, a mullivariable

version of the GPC is recommended to be cvaluated on the process, in order to compensate

for the complex interaction between the process variables. It should be kept in mind that

many problems may arise in practical application that were not seen in simulation due

to assumptions and approximations.
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Appendix A

The Standard Least Squares {(SLS) method js derived here for estimation of the

CARIMA model parameters. From chapter 3, this model can be written as:

A0 =+ B e - 1) 4 S (A1)

The polynomials and parameters in the above model were defined in chapter 3. The

model can be written in a compact form, using vector notation:

Ay(t) = ¢70 + ((2) (A.2)
where ¢ is a vector containing the measured input/ouput data including the noise
values. 8 is the vector of the actual model parameters. This vector is usually unknown
and slould be estimated based on the available set of data. Now sssume a model of

the system of the correct structute:
By(t) = ¢78 + &(t) (A.3)

where § is the vector of the estimated model parameters and €(t) is the corresponding

modelling (or fitting) error.

Our aim s to select § so that the overall modelling error is minimized. This modelling

error can be written from the above equations as:

E(ty = (L) + 67(8 - 6) (A1)
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and for N runs (or for N set of data poinls), the model can be wrilten as:
. Y =06+ E (A.5)

where Y is a vector containing the output values, ® is a matrix containing all the
input/output data and £ is a vector containing the values of modelling error. Rear-

ranging the last equation:

E(t) = Y — &4 (A.6)

The SLS method selects an estimate § which minimizes the following cost function

which represents the sum of sqaures of errors:

J= i &) = ETE (A7)

=1

rewriting the above equation :
J = (¥ — )T (Y — 26) (A.8)
rearrangin another time:
J=YTY —TaTY — Y736 + 6737 36 (A.9)
minimizing J with respect to é:
z—g = 207y 4+ 28796 =0 (A.10)
stmplifying the above equation:
3Tef = 3Ty (A.11)
and this solves for a unique minimum if the second derivative is positive:
a*J

— =207 (A12)
09?
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which is positive definitc. This means that the solulion # is

therfote the least squares cstimalion is given by:

0 = [T ] (BT Y

10

A unique minfmum,

(A.13)
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Appendix B

CﬁﬁlliltiiiﬁiliiﬁQ.*iﬁﬁlﬁiﬁ*lii*ili*iiil;\--\ik*l*ﬁﬁt*ﬂii*ﬁill*iiﬁiiii

C RECURSIVE LEAST SQUARES SUBROUTINE ‘ **
C This program calculates the Parameters estimates of e
C an assumed model using the RLS identification algorithm +«

CﬁilttlﬁtihiiiiiiAiitiilﬁiii*iiﬁiiii*iillt*iii*iiﬁliil**ﬁii*liiiﬁii
SUDROUTINE ESTI(H,NY,NA,DY,DU,THETA,P,NPAR.FORGET,SEGMA,E3,FHIN,IFT)

REAL PHI(SO).K(SO),THETA(SO),P(SO,SO},P"P(SO),PHP2(SO),PHP3{SO,50)
I,DU(SU).DY(SO).FH3(50),R(50,50),PP1(50,50)

NAL=NA+1
R e T
(o The vector PHI Contalns input-output data
¥Y=DY(NY))
CIL{1)=DY{NY--2)-DY{NY-])
DO 330 I=NALl,NPAR
330 PHI(I}-DU(NY-I+NA1)
e
o Calculation of the prediction ercor
ER=Y
DO 225 I=l,NPAR
225 ER=CER~THETA{I}*PHI{])
e e e e
C Nultiplication of the Covariance matrix
C by the data vector pHT
c PHP=PHI*P VECTOR}
DO 220 'I=1,NPAR
220 PHP{I)=0
DO 221 I=1,NPAR
DO 221 J=~1,NPAR
221 PHP(I)=PHP(I}+FPRI(I)*P(J, 1)
e e
C Multiplication of the data vector PHI by the
C PUP(PIII*P) vector, the tesult is a scalar
[ PH=PIIP*PHI (SCALAR VALUE) '
PH=0
DO 222 I=],NPAR
222 PHxPH+PHP{I)*PHI(I}
PH=PH+1
o e
C Calculation of the cocrection gain vector
DO 214 1=1,NPAR
214 FHP2(I)=0.
DO 5 I=],NPAR
DO 226 J=1,NPAR
226 PHP2(I)=PIIP2{I)4P(1,d)4PHI(J)
‘5 K(1)=PHP2{1)/PH
e e e e
C Variable forgetting factor
FORGET-I—(ER‘*Z/ABS(PH)/SEGHA)
o e e e
C Updating the covariance matrix {pit)]
c PHP3=K*(P*PHI) (MATRIX)
328 DO 9 I=1,NPAR
DO 9 J=1,NPAR
PHP3(I,J)~K(])*PHPZ(J)
9 P{I,J)-(P(I,J)—K(I)‘K(J)*PH)/FORGET
C e e e e LT
C Model parameters updating, Theta
DO 11 Ie],NPAR
11 THETA{1)=THETA{I)*ER*K (1)
RETURN
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Appendix C

C*il*ilkiQhki*lhi**iii*i*ihlﬂﬁﬂl*iﬁitl*iAill*liiliiiiiil*lii*i

C MAIN PROGRAM >
C This main program calls the GPC or PID subroutines #»
c and plots the response and control activity versus w»
C time LA

cii*iilkiitlﬁtiiiliii**lkihﬁttii*ilﬁ*ii*illﬂiiiiliitlﬂi***iili

DIMENSION THETA(SO),TH(IO.ZOOOJ,P(SO,SO),E(ZODO),EZ(ZOOU),T(ZOOO).
ZBETA(ZOOO),YG(SO),W(ZUOO),U(SD),WI(SO),YP(ZOUO),UP(ZOOU).T3(2DOO).

3x1(2000),XZ(ZOOO).X3(2000},Xﬂl(2000),KAZ(ZOOO),XR3(2000),
SXBl(ZOUOI,XBZ{ZDOU).XBJ(ZOOO),X4(2000),XS(ZOUO),XG(ZOOU),
dUPZ(ZUUU},TZ(ZOUO),TP(IO),YF(SO),UF(SO),UF2(5U),YF1(50),
654(2000),A(lU),B(lO),UPID(ZOOO}
REAL LAMBDA,KC
Ctititp*ﬁﬁﬁniitii*tiﬁi*i**&ahiikiiiiiﬂiiii**iliiﬂﬁiikﬁiiiikiil*tilﬁiﬁ

c Read no. of time steps and no. of elements in the data vectors

READ(1,*)NS,NY
Cc Read no. of polynomial parameters and their values
READ(1,*)NA,NB
READ(L,*)(A{1),1~1,NA)
READ(L,*)(B(X),1=1,NB}

c No. of parameters NPAR-NA+NBD

NPAR=NA+NB
Cli**ﬁtiﬂiﬁllliﬁiiiii*ilﬁ*i*idiﬁﬂ*iklt*ﬁiilﬂi*kiliiﬁi*ii!lihﬁiﬁ*i*i*i
c Read the time delay in samples

READ(1,*)KD,1FT
c Input the T-polynomial coefficients

READ(L,*)(TP(I),1=1,2)
C Read the GPC parameters values

READ(I,‘}LAMHDA,NI,NZ,NU
c Read the RLS parameters

Read(1,*)SEGMA,COV
CrHrAbd b d bk kb A AR A AR RA R A ARA SR A RN

C Call the random number genetation subroutine
CALL RN(E,E2)
C‘lii*iiliii*i*iiiii**itiilﬁﬁl**
C Initial Covariance matrix size
DO 16 I«1,NPAR
DO 16 J=1,NPAR

P{I,J}=0
16 P(I,I)=COV
c*ﬂllil**i*i*l**ii*tiiiiﬁl*tii*i
C Read initial parameters values

READ(I,*)(THET&(I),I-I,NPAR)

ciﬁﬁllii#tI*till**ﬁik*i*ili**ﬁlﬂ

C Caiculatlon of the process output
M=
C YG~A(I)*Y4+B{I)*y
24 YA=0.
¥B=0,
DO 37 1=1,NA
37 YA=YA-A{1)*YG(NY-1)
DO 38 1I=1,NB
38 YB-YBJD(I)*U(NY—KD-I)

YG{NY)=YA+Y¥D
Cl*i*ﬁlﬁiiil*i*ii*itiiiiiiiﬁ**il*iﬁi*i**ﬁﬁiiii*i**iﬁ*lﬂﬂﬁﬁ*
C Choice of either the GPC or the piD

READ(1,*}acC

GOTO(320,321%}aC

Ciiﬁi*!i*iiii*iiliii*liiiﬁiii*iﬁi*i*ltiii*l*i*iiiiii!ii*i

C Data filtering through the T-filter
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320 » UF{NY)=(U{NY~-1)-U{NY-2)-TP(2)}*UF(NY-1))/TP(1)}
YEL(NY)=({YGINY)-TP{2)*YFL({NY-1))/TP{])
YF(NY)={YG{NY)}=YG{NY-1)=TP(2)*YF(NY-1))}/TP(1)
UF2(NY)=(U{NY-KD-1)-U{NY-KD~2}~TP{2)*UF2{NY-1))/TP{1)

Cillilﬂitlii*ii!ii#iiiiilhliiiﬁi*iitﬁni*htn**ik*&hi*iiil*h

C Call identification subtoutine
CALL ESTI(M,NY,NA2,YF,UF2,TIHETA,P,NPAR, FORGET,SEGHA,E3,FMIN,IFT)
DO 2 I=1,NPAR

2 TH{I,M)=THETA{I)

ci&*iii*ii*iiﬁlﬁiiiiﬁialtlil*iiihi*i*li&kiiilihlltiﬁttilili

C Call GPC subroutine
CALL GPC(M,Wl,THETA,NA,NB,YG,YF1,Ur,TP,D1U,NY, LAMBDA,

2N]1 ,N2,NU,KD)

C Get the current control signal
U{NY)=DIU+U(NY-1)
GOTO 200

ChAM AR RN AR R R AR AR AR RN R R AR AR AR AR R AR R AR R ARA AR RN RN A NN h Ak h
C CALL PID SUBROUTINE

c Read the PID paramecters

321 READ(1,*)KC,TS,TOI,TOD
CALL PID{(M,NY,YG,U,W,Ul,TS,KC,TOI,TOD}
U(NY)=U1

(ol AERAREERAERRAREREEARELREREEESEREEEERRRRRERERERERERERRRRRRERD,

200 IF(MN.GE.N5) GOTO 23

C Jacketing of the control signals
IF(U(NY).GT.100)U(NY)}=100
IF{U(NY).LT.Q}U(NY)=0
CALL SH{NY,YG,U)

55 M=M+l

GO TO 24
cl*iii*i*l*iiit*ﬁk**ﬁi**i&**ii**iiliihli*iihii
C PLOTTING SUBROUTINE

po 76 I=1,NS
X1{1)=TH{1,1)
X2(1)=-1-TH(1,1)
X3I{1)=TH(2,1)
X4(1)=TU{3,1}
76 X5(I)=TH{A,1}
READ(L, *}XMIN, XMAX, YMIN, YMAX, XS5,YS
READ{1l,*)CMIN,CMAX,PMIN,PMAX,¥Y52,¥51]
call iniplt(1,.FALSE.,1.0)
c Plot the process output along with the set point
call viewport{(0,5000,3500,7000)
call graphboundary(900,4900,100,3000)
call scale{XMIN,XMAX,YMIN, YMAX)
call axis{(Xs, '10.1',*Time (sec) *,0,Y5,°10.0',’Pc (psi) ',2)
CALL POLYLINE{T,W,NS5,0,0,0,0,0)
CALL POLYLINE{T,YP,N$,0,0,0,0,0)
o Plot the contreol action
call viewport{0,5000,0,3500}
call graphboundary(900,4%00,700,3400}
call scale(XMIN,XMAX,CMIN,CMAX)
call axis(X5,'10.1’,’Time (sec)’,2,YS52,710.0',"Valve Op. (%) ',2)
CALL POLYLINE{(TZ,UP2,H52-2,0,0,0,0,0}
C Plot the identified parameters
call viewport(5000,10000,0,7000)
call graphboundary(1000,4800,700,4500}
call scale(XMIN,XNAX,PHIN, PMAX)
call axis{Xs,'10.1','Time {sec}’,2,¥53,710.1","Theta’,2)
CALL POLYLINE(T,XAl,NS,0,0,0,0,7)
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» CALL POLYLINE(T,XA2,NS5,0
CALL POLYLINE{(T,XB1,NS5,0
CALL POLYLING(T,XB2,NS,0
CALL POLYLINE(T,XB3,NS,0
CALL POLYLINE({T,Xl,NS5,0,
CALL POLYLINE{T,X2,NS,0,
CALL POLYLINE{T,X3,NS,0,
c*ti*ﬁiiii.lﬁﬁihi*l**ﬁtiliii*ill
Shifting subroutine
This subroutine shifts the data vectors
by moving each element a one step Backward
{(Two vectors are shifted each time}
SUBROUTINE SH({NY,YGl,UD)
DIMENSION YG1(50),UD(50)
DO 32 Kw=l,NY-1
YGL{K)mYGL(K+1)
32 UD{K)=UD{K+1}
RETURN
END
CiiQl*iil*tﬁt*li*lt*iiii*iii*ﬁ*ii**nliil***ii*
[ RANDOM NUMBER GENERATION SUBROUTINE
SUBROUTINE RN(E,EZ2}
DIMENSION E{2000),E2{2000)
N=2000
E{l)=.5
P=]1
K=135
Do 1 1=2,8
E(I)=E({I-1)*K/P
Di=INT(E(1)}
E{I)=E{I)=-D1
E2(I)=(-1)**1*E(1)
1 CONTINUE
RETURN
END
C*iﬁiiil**lii**ﬁﬁilitﬂﬁliiii*iiﬁi*llliiiﬁi*tii‘
C PID SUBROUTINE
SUBROUTINE PID(M,NY,YG,U,W,Ul,T,KC, TOL, TOD)
DIMENSION W({2000),YG(50),U{50)
REAL KC
c The parameters of the digital rID
CAO-KC*(I#(T/TOI)+(TOD/T))
CAl=KC*(14+2*(TOD/T))
CA2=RC*{TOD/T)
E=W{N)-YG(NY)
Ul=U(NY-1)+CAQ*E-CA1*EL1+CA2*E2
E2=El
El=g
RETURN
END
ciiﬁii*iiii*iliﬂ-ii&llﬁ&*thI-*iilﬁiQiiiiiliiii*ﬁl*iiil‘liilt*ﬁ*ﬁiﬁi
C GPC SUBROUTINE *
c This subroutine calculates the control output using * &
C the Generalized Predictive Control method ) Ll
CAQ&IG&tﬁﬁt.ﬁl—liﬁl*ihﬁlii#iﬁﬁldiliﬂ*ﬂb*ﬁﬁlﬁilil*ﬁﬁ*lﬂlﬁﬁﬁ*lﬁﬁi*i
SUBROUTINE GPC(M,W,THETA.NA,NB,Y,YF.UF,TP,DIU,NY,LAHBDA
5,N1,N2,NU,KD)

POODO v v o«

LERE L XN ]

anan

REAL E(60),A(10),n{10),AD(50),DEL(2},G(50),G1(50),Y{50},G2(50),
IPF(SOI.FI(SO),DU{SU),WF(SO),DUI(SOI,W(50),THETA(SO!,GB(IO,SD), i

JF(IO,SO).FFM(SO,SO).GM(SO.SO).11(50,50),GG(50.50),TP(10).
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2&2(50,50),GT(50.50).GTG(SO,SU),GGI(SU,SO),GGZ(SO,SO),YF(SO),
4UF(50),GUD{50),FYD({50),FF(50,50)

12

REAL LAMBDA ’

NPAR=NA+ND

NAl=NA]

ND=NB+KD

NBl=NB-1

The jdentified model parameters
All}=1

A(2)=TUHETA(L)

AMI)m-1-A(2)

DO 86 I=1,KD

B(I)=0.

DO 89 I=NA+l,NPAR
D(I-NA#KD)-THETA(I—I)

The delta operator

DATA (DEL{I)},I=1,2)/1,~1/
Multiplication the delta opetator
by the A polynomial

CALL PM(NAL,2,A,DEL,AD,NAD)

Start of Diophantine equation recursion{E,F are obtained)

E(1)=1

Start of G polynomial partition (G,GB are obtained)

G(1)=B(1)

DO 90 I=1,NAl
F(I,1}=TP(I+1)-AD(1+1)*E(1)

DO 14 I=l,NBI
GBII,1)=B(I+1)-TP{I+1)+%G(1}

DO 1 J=2,N2 .
E(J)=F({1,J-1)
G(J}=(E(J)*B(1)+GB(1,I-1))/TP(1}
DO 22 I=1,NA
F{I.J)-F(I+1,J—1)—AD(I+1}‘E(J)
F(NAI,J)-O.—AD(NA1+1)*E(J)

Do 13 1=1,NB1

GB(I,J)-E(J)*B(I+1)-G(J)*TP(I+1)+GB(I+1,J-1)

CONTINUE

DO 12 J=1,N2

DO 3 I=1,J
GL(I)=G(a-1+1)

The G-matrix in GPC
GM(J,1)=G1{1)

DO 7 K=1,NB1
G2(K)=GB(K,J)

DO 11 I=1,NAl
F1{I)=F{1,J)

Calculation of the parameters of f
CALL DP(NBI,NY,GZ,UF,GU)
GUD({J)=GU

CALL DP(NAI,NY,FI,YF,FY)
FYD{J)=FY

PE(J)=-(GU+FY)}

CONTINUE

DO 39 1=N1,N2

DO 39 J=1,NU
GM{I-N1+1,3)=GM(I,d)

Calculation of the Transpose of the G-matrix

CALL MT(N2,NU,GM,GT)

Multiplication of the matrix by its tr

CALL MM{NY,NU,N2,NU,GT,GM,GTG)

-vector in GPC{GU,FY}
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C

C

po 111 1=},NU

po 111 J=1,NU

I1{1,J)=0

11(1,1)=1.

The ddentity maltrix

CALL MC{NU,LAMDDA,I1l,12)

CALL MA(NU,I2,GTG,GG)

1f Nu>l then call the matrix inversion subroutine
IF{NU.NE.1)TREN

CALL MI(NU,GG,GGl)

ELSE

GG1(1,1)=1,/GG({1,1)

ENDIF

CALL MM{NY,NU,NU,N2,GGl,GT,GG2}

CALL PA[(N2,W,PF,WF,NWF}

Calculation of the optimum control increments vector
CALL HV(NY,I,NZ,GGZ,WF.DUI)

DIU=DUL{1}

Cﬂii*iillii*i*llﬁ**lii*i*iiiii*itiiilillﬁitiii

c

Used subroutines for the GPC

cﬁ*ihllhlh*iiiﬁ*iii***iiiiﬁﬁ*ii*li’ii*iii**il*

Cc
c

100

99

Poiynomial multiplication subroutine
To multiply two polynomials
SUBROUTINE PM(NI,NJ,P1,P2,FPP,K)
DIMENSION P1{50},P2(50),PP(50)
DO 100 K=1,NI+NJ

PP{K}=0

Do %9 1-1,NI

DO 99 J=1,NJ

K=1+J-1

PE(K)=PP(K)+PL1(1)}*P2(J)

RETURN

END

Cl‘iiili*iil*il**i*i*ﬁii**liﬁ*kiﬁi*ikiiil&*i!l

c
C
C

97

Dot product subroutine

to find the dot product of two vectors
or polynomials

SUBROUTINE DP{ND,NY,H]l,H2,P)
DIMENSION H1({50),H2(50}

P=0

Do 97 I=1,ND

J=NY-I+1

F=P+HLE(1)*H2(J}

RETURN

END

ciii&i**iihl*i*lﬁiilliit*ttﬁl**ﬁ***iliiili*&ﬁi

C

98

Polynomial additien subroutine
SUBROUTINE PA(NI,F3,P4,PP2,K)
DIMENSION P3(50),p4{50),PP2(50}
DO 98 I=1,NI

PPZ2{1)=P3(1}+P4(1})

RETURN

END

C!iiti*i*i**ihl*i*iliihliiii**il*tiii*ill*iil*

C
C

Matrix transpose subroutine

To find the transpose of a matrix
SUBROUTINE MT(NA,NU,A,AT)
DIMENSION A{50,50),AT{50,50)

DO 5 I=1,NA

D 5 J=1,NU
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5 AT{J,L¥=Al1,J3)

RETURN

END
cttl*ii*lli#**iii*iiii*l*lii***ﬁiiliii*ki*iﬁii
C Matrix addition subroutine

SUBROUTINE MA{NA,A1,A2,A3)

DIMENSION Al(50,50),A2(50,50),A3(50,50)
DO 85 I=1,NA

DO B85 J=1,NA

as A3(1,3)=AL{1,J)+A2(1,3)

RETURN

END
Cl.iiﬁhﬁi!kl.ﬁl*ﬁQ*iiilﬂli*iikiiihhlliiﬁ**i&l*
c Matrix multiplication subroutine
C TO multiply two matrices

SUBROUTINE MM{NY,N1,N2,N3,A4,NS,N6)
DIMENSION A4(50,50),A5(50,50),A6(50,50)
Do 110 I=1,NY
Do 110 J=1,NY
110 AGLI,J)=0
DO 6 I=1,Nl
00 6 JI=1,H13
DO 6 Kel,N2

RETURN

END
CIIQi**hiiiiillll*iﬁ**id*ﬁQﬂQ*i*ﬁiil*iﬁ.Qiﬁ
C Matrix-vector multiplication subroutine
C To multiply vector by a matrix

SUBROUTINE MV{NY,N1,N2,Ar7,AD,A9)
DIMENSION AT7(50,50),AB(50),A%(50)
DO 120 1I~1,NY

120 A9(1)=D
PO 46 J=1,N1
DO 46 I=1,N2

46 AF{I)=A9{I)+AT{I, I} *AB(1)
c46 PRINT*, 'DU,GG2,WF’ ,A9{J)} ,AT(J,1),AB(JI)
RETURN
END
Ciﬁiiii**llll*ﬁ*ii**i**ﬁllll*i**illﬂillﬁi***i*
C Mattrix - constant multiplication subroutine
C To multiply a matrix by a constant value

SUBROUTINE MC({NU,C,A7,AD)
DIMENSION A7{50,50),AB(50,50}
po 807 1=1,NU

DO 87 J=1,NU

87 AB(I,J)Y=C*AT(1,J)

RETURN

END
c!i&ii**iiilhiiQli*it**ﬁlii*ﬁiilli*lﬁ*ﬁli*t‘*i
Cc Matrix inversion subroutine
C To find the inverse of a square matrix

SUDROUTINE MI(N,AA,AL)
DIMENSION AA(50,%0),AI{(50,50)
po 10} 1=1,N
pPo 101 J-=1,H
MI{X,J)=0

101 AI(I,1)=1
DO 102 1=2,N
Do 102 K~1,1-1
IF{AA(T,K),EQ.C0.) GO TO 102
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102

103

104

Zi=AA{K,K}/AR(I,K)

Do 102 J=1,N
AA[T,J)=AN{K,J}-Z1*AA(I,)
AL(I,J)=AT{K,J)-21*A1(I,J)
CONTINUE

po 103 1=N,2,-1

DO 103 K=N,I,-1
iIF(AA(I-1,K).EQ.0.}) GO TO 103
22=AN(K,K)/AR(1-1,K}

Do 103 J=n,1,-1
AR{1I-1,3)=AA(K,J}-Z2*AR(I-1,T)
AI(I-1,J)=AL(K,J)-22%A1([1-1,T)
CONTINUE

po 104 1=1,N

Z3=AA(1,1)

po 104 J=1,N
A(1,3)=AA(1,2}/233
AI(I-J)=AI(I!J)/Z3

CONTINUE

RETURN v--'

END H
814725

n
dJd
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